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1. Introduction

This note is concerned with the computation of periodic orbits for nonlinear systems. Nonlinear
differential equations appear frequently in modelling various physical phenomenons including
chemical kinetics [1], biology [2], and electronic devices [3]. Depending on the initial conditions
and system parameters, the vector field in the phase space can be very rich and the response of the
system can be very different. For autonomous systems periodic orbits are closed curves in the
phase plane and their evaluation can help to map out the structure of the flow field in the phase
plane. Also, for some nonlinear and otherwise chaotic plants, linear feedback controls have been
used to stabilize the system around periodic orbits [4]. As a result the mathematical investigation
of such systems often includes the question of existence and the evaluation of periodic orbits [5].
Periodic solutions are closed curves in the phase space, in other words, if the system trajectory is

given by xðtÞ; x 2 Rn; tX0; then there exists a positive number T such that xðtÞ ¼ xðt þ TÞ where T

is the period. Therefore, one is led to look for a set of n unknown initial conditions xð0Þ; and an
unknown period T by solving a system of n nonlinear algebriac equations given by

xð0Þ � xðTÞ ¼ 0: (1)

Most of the existing methods attempt to solve the above system of equations using various
Newton methods [6,7]. A number of methods have also been proposed in which the above system
is accompanied by an additional condition such as sðxð0Þ;TÞ ¼ 0; in order to eliminate the
see front matter r 2004 Elsevier Ltd. All rights reserved.
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translational invariance of the periodic solution [8,9]. It is also shown that such a condition is not
necessary and periodic solutions can be obtained, using Gauss–Newton iterations [7]. Multiple
shooting methods [10], and approximate averaging techniques using elliptic functions [11] have
also been used to solve for the periodic solutions for applications in circuit simulations and
mechanical vibrations. Another method is also proposed in which external controls are used to
guide the system towards a prespecified regular orbit [12], which requires a qualitative description
of the periodic orbit.
The present work is based on a variational principle. It leads to an iterative algorithm

which converges to a point on the orbit. The formulation allows to include higher-order
conditions for periodic orbit. In Section 2, we present the first-order conditions and, using a
numerical example, explain the algorithm in details. Then, higher-order conditions are included
and a number of examples are used to discuss the applicability of the method. Section 3 is devoted
to conclusions.
2. A two-point boundary value problem

Consider an autonomous system of first-order ordinary differential equations given by

dx

dt
¼ f ðxÞ; x 2 Rn; f : Rn 7!Rn; tX0: (2)

We assume that the function f ðxÞ is differentiable as many times as needed. The problem of
finding a periodic orbit for this system is to look for an initial condition, xð0Þ ¼ x0; for which
xðtÞ ¼ xðt þ TÞ; where T is the period. The present approach is based on a variational method
which seeks to minimize a cost functional given by

J ¼ 1
2
ðx0 � xT Þ

>
ðx0 � xT Þ; (3)

where xT ¼ xðTÞ; and where we are using superscript > to denote the transpose. The above
minimization is subject to the equations of motion and therefore, using Lagrange multipliers, we
can formulate a constrained minimization problem given by

J ¼ 1
2
ðx0 � xT Þ

>
ðx0 � xT Þ þ

Z T

0

l>ð _x � f Þdt; (4)

where lðtÞ 2 Rn is the Lagrange’s multiplier vector. Extremal conditions are obtained by taking
the first variation of the cost functional which is given by

dJ ¼ ŷ>ðdx0 � dxT Þ þ

Z T

0

½dl>ð _x � f Þ þ l>ðd _x � f xdxÞ�dt; (5)

where f x ¼ qf =qx; and ŷ ¼ x0 � xT is the error. We can integrate the term l>d _x by parts to giveZ T

0

l>d _xdt ¼ l>ðTÞðdxT � _xðTÞdTÞ � l>ð0Þdx0 �

Z T

0

_ldxdt: (6)

Note that the upper limit of the integration, the period T, is also a variable and the variations of
the term inside the integral at t ¼ T should be included. After grouping various terms in Eq. (6)
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the first variation of the cost functional simplifies to

dJ ¼ ðŷ � lð0ÞÞ>dx0 þ ð�ŷ þ lðTÞÞ
>dxT

þ

Z T

0

½ð�_l
>
� l>f xÞdx þ dl>ð _x � f Þ�dt þ ð�lðTÞ

>f ðxðTÞÞÞdT : ð7Þ

The variations in dxT ; dl; and dx are arbitrary and we can obtain necessary conditions given by

_x ¼ f ; xð0Þ ¼ x0; _l ¼ �f >
x l; lðTÞ ¼ ŷ: (8)

The updating equations are obtained by noting that for the extremal value of the cost functional,
dJ=dx0 ¼ 0 and dJ=dT ¼ 0: Therefore, starting from initial guesses for x0 and T these gradients
can be used to update their values according to

Dx0 ¼
dJ

dx0
¼

1

a
ðlð0Þ � ŷÞ; DT ¼

dJ

dT
¼

1

b
lðTÞ

>f ðxðTÞÞ; (9)

where the parameters a and b are positive constants. This completes the two-point BVP that needs
to be solved. We can now formulate an iterative algorithm as follows.

2.1. Algorithm
(1)
 Choose an initial condition x0; an initial value for T and two positive constants a and b:

(2)
 Use the given initial condition and solve the system of equations (1) forward until the time T.

(3)
 Obtain the values of xðTÞ; and thereby, obtain the error ŷ ¼ x0 � xT :

(4)
 Solve the adjoint equation (8), backward in time, with the boundary condition at t ¼ T given

in Eq. (8).

(5)
 Update the assumed values of x0 and T according to Eq. (9) and go to step (2).

(6)
 Repeat the process until the error ŷ is arbitrary small and convergence is obtained.
The only nonzero component enters the Lagrange multipliers through the error ŷ at t ¼ T : For
vanishing error, the Lagrange multipliers are zero everywhere, and in particular at t ¼ 0; i.e. l0;
which corresponds to convergence. In this note we start with large values of a and b and keep
them constant. As the iterations proceed we gradually reduce their values. For large values of a
and b the change is very gradual and the convergence is slow. This requires the algorithm to
compute the gradients at every iterations.
We next consider a numerical example in order to explain the algorithm in detail.

2.2. Example 1

We consider the nerve membrane model [13]. This system is also considered in Ref. [7], and is
given by

_x1 ¼ 3 x2 þ x1 �
x3
1

3
� 1

� �
; (10)

_x2 ¼ �1
3
ðx1 � 0:7þ 0:8x2Þ: (11)
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The associated two point BVP is given by

_l1
_l2

" #
¼ �

3ð1� x2
1Þ �1

3

3 0:8
3

x3

" #
l1
l2

� �
; (12)

lðTÞ ¼ ŷ ¼ x0 � xT ; x0 ¼ x0 þ
1

a
ðlð0Þ � ŷÞ; T ¼ T þ

1

b
lðTÞ

>f ðxðTÞÞ: (13)

The procedure is to assume an initial guess for x0 and T and solve Eqs. (10–11) forward from
t ¼ 0 to T ; and thereby, compute the error ŷ: The adjoint equation can then be solved backward
in time after which the assumed values for x0 and T can be updated according to Eqs. (13). Fig. 1
shows the values of x0 and the error ŷ2 as a function of the number of iterations. The iteration is
started from the initial guess ð�0:5; 0:5Þ: The constant parameters are chosen as a ¼ 500 and
b ¼ 20: It also shows the convergence of the period, i.e. 0:1� T : Fig. 2 shows the changes in the
initial condition x0 as it moves towards a point on the orbit, during which, the error is reduced.
Fig. 2 also shows two other iterations which were started from ð�1:0; 1:0Þ and ð0:8; 0:7Þ: For these
cases the same values are used for the constants a and b: The algorithm converges to a different
point on the orbit depending on the choice of the initial guess. The parameters a and b are chosen
for the convergence of the scheme. It is best to start with a relatively large value and then reduce it
for faster convergence. An appropriate value can be chosen after only a few trials.
The periodic orbit for the above system is asymptotically stable. In fact, if we simply start the

system from an initial condition, for example x0 ¼ ð2:0; 2:0Þ; then the response of the system
approaches the above periodic orbit very quickly. For most dynamical systems the flow field in the
phase plane can be very complicated and the above algorithm will require a large number of
iterations, in addition to an initial guess which is close to the periodic orbit. This is also the case
Fig. 1. The convergence of the initial condition to a point on the orbit as a function of the number of iterations for

Example 1. It also shows the convergence of the period, 0:1� T ; and the reduction in the error. Convergence of x1;
; convergence of x2; ; convergence of 0:1� T ; ———; convergence of error, . . . . . . .



ARTICLE IN PRESS

Fig. 2. Periodic orbit for Example 1, and the convergence to a point on the orbit for three different initial conditions.

x0 ¼ ð�1:; 1:0Þ; ———; x0 ¼ ð0:8; 0:7Þ; ; x0 ¼ ð�:5; 0:5Þ; ; orbit, . . . . . . .
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with Newton-based algorithms. However, using this formulation one can easily include higher-
order conditions for the periodic orbit which will greatly improve the convergence of the scheme.
For a dynamical system given by Eq. (2), if a point x0 is on a periodic orbit with period T, then

x0 ¼ xT : This led to the cost functional given in Eq. (3). In addition to this condition we also note
that if the point x0 is on the periodic orbit with period T, then _x0 ¼ _xT and €x0 ¼ €xT ; . . . ; assuming
that the function f can be differentiated as many times as needed. We can then improve the
convergence of the above algorithm by including these higher-order conditions in the cost
functional. These terms are computed using

_x ¼ f ðxÞ; €x ¼ f xf ; ___x ¼ ð f x f Þx f ; etc: (14)

Now, we can simply add higher-order conditions to the original cost functional and consider the
same minimization problem. The modified cost functional is given by

J ¼ 1
2ðx0 � xT Þ

>
ðx0 � xT Þ þ

1
2ð _x0 � _xT Þ

>
ð _x0 � _xT Þ þ

1
2ð €x0 � €xT Þ

>
ð €x0 � €xT Þ

þ    þ

Z T

0

l>ð _x � f Þdt: ð15Þ

In a similar way, the necessary conditions are obtained by taking the first variation of the cost
functional, integrating various terms by parts, and using the fact that the variables can have
arbitrary variations. The associated two-point BVP is now given by

_x ¼ f ; xð0Þ ¼ x0; _l ¼ �f >
x l; (16)

lðTÞ ¼ ŷ1 þ ½ f xjT �
>ŷ2 þ

@

@x
ð f xf ÞjT

� �>
ŷ3 þ    ; (17)
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where the symbol �jT is used to denote the evaluation of � at t ¼ T : After each iterations, the
initial conditions are updated according to

x0 ¼ x0 þ
1

a
lð0Þ � ŷ1 � ½ f xj0�

>ŷ2 �
@

@x
ð f x f Þj0

� �>
ŷ3 þ   

 !
; (18)

T ¼ T þ
1

b
lðTÞ

>f ðTÞ; (19)

where

ŷ1 ¼ x0 � xT ; ŷ2 ¼ f j0 � f jT ; ŷ3 ¼ ð f x f Þj0 � ð f xf ÞjT ; . . . : (20)

The above two-point BVP can now be solved in the iterative algorithm described in Section 2. We
next consider a number of numerical examples.
2.3. Example 2

We consider the third-order Rossler system [14]. The dynamics is given by

_x1 ¼ 2þ x1ðx2 � 4Þ; _x2 ¼ �x1 � x3; _x3 ¼ x2 þ bx3; (21223)

where b ¼ 0:42: For this system we include four conditions namely, x0 � xT ; _x0 � _xT ; €x0 � €xT and
_€x0 � _€xT : Higher derivatives of the state are given by

_x ¼

2þ x1ðx2 � 4Þ

�x1 � x3

x2 þ bx3

2
664

3
775; €x ¼ f x f ¼

2ðx2 � 4Þ þ x1ðx2 � 4Þ2 � x1ðx1 þ x3Þ

�2� x1ðx2 � 4Þ � x2 � bx3

�x1 � x3 þ bðx2 þ bx3Þ

2
664

3
775;

€x ¼

�16x2 þ 2x2
2 þ 32� 70x1 þ 16x2

1 � 4x3 þ x1x2ðx
2
2 � 12x2 þ 47� 4x1 � 3x3Þ þ ð12� bÞx1x3

�2x2 � x1x
2
2 þ 8x1x2 þ 8� 15x1 þ x2

1 þ x1x3 � bx2 þ ð1� b2Þx3

�2� x1x2 þ ð4� bÞx1 þ bðb2
� 2Þx3 þ ðb2 � 1Þx2

2
664

3
775:
ð24Þ

The coefficient matrices ½ f x�
>; ½q €x=qx�>; and ½q _€x=qx�> can readily be obtained. We choose the

constant parameters a ¼ 6:� 102 and b ¼ 2:� 102: The iteration is started from an initial
condition x0 ¼ ð1:0;�2:0; 3:0Þ: The time step size is chosen as Dt ¼ 0:001: Fig. 3 shows
convergence of the initial condition as a function of the number of iterations. It also shows
that the error is reduced and the iteration converges to a point on the periodic orbit. Figs. 4 and 5
show the periodic solution when the system is started from the calculated initial condition, i.e.
ð0:37476359;�0:8575478;�3:5193117Þ: This orbit is in fact an unstable orbit imbedded in a
chaotic attractor. We next consider the same system and start the iterations from the initial
condition x0 ¼ ð1:0; 0:1;�1:0Þ: The algorithm reduces the error and as the iterations proceeds it
converges to the point ð0:52943123; 0:22236117;�0:5294312Þ: However, this is a critical point
(equilibrium point) of the function, i.e., f ðxÞ ¼ 0: The algorithm converges to extremal points of
the cost functional given in Eq. (15). This also includes the critical points of the system.
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Fig. 3. The convergence of the initial condition to a point on the orbit as a function of the number of iterations for

Example 2. It also shows the convergence of the period, 0:1� T ; and the reduction in the error. Convergence of x1;
———; convergence of x2; ; convergence of x3; ; the error, . . . . . . .; the convergence of 0:1� T ; . . . . . . .

Fig. 4. The periodic orbit for the Rossler system in Example 2. x1-vs-x2; ———; x1-vs-x3; ; x2-vs-x3; .

M. Tadi / Journal of Sound and Vibration 283 (2005) 495–506 501
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Fig. 5. The periodic solution for the Rossler system in Example 2. x1; ———; x2; ; x3; .
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2.4. Example 3

We next study the dynamical system generated by the potential x2y2: This system was
considered to be ergodic until it was shown that it has at least one family of stable periodic orbits
[15], (also references therein). For this example, we were not able to obtain convergence to a
periodic orbit without the inclusion of the higher-order terms using the present scheme. The above
potential generates a system which is given by

_x1 ¼ x3; _x2 ¼ x4; _x3 ¼ �x1x
2
2; _x4 ¼ �x2

1x2: (25228)

For this system, we need to include six conditions, namely, ðx0 � xT Þ; . . . ; ð
_€€x0 �

_€€xT Þ: Higher
derivatives of the state and the corresponding gradient matrices can readily be computed. Fig. 6
shows the convergence of the initial condition x0 as a function of the number of iterations. The
iteration is started from x0 ¼ ð0:17; 0:00001; 0:0; 0:0Þ>: The constant parameters are chosen as
a ¼ 1:� 103 and b ¼ 1:� 109; and the initial guess for the period is T ¼ 30: The iteration
converges to ð0:170000000125; 0:98101038E� 5; 0:147458E� 9;�0:2168999E� 6Þ with the per-
iod converging to 36:957: Note that we are scaling the data in Fig. 6. Fig. 7 shows the periodic
orbit as a function of time when the system is started form the calculated initial condition. By
varying the initial guess for x1ð0Þ we can obtain a number of periodic solutions in this region of
the phase space. If the initial guess is chosen as x0 ¼ ð1:; 0:00001; 0:0; 0:0Þ>; then the iterations
converges to ð1:00000000003; 0:988722206E� 5; 0:7677829E� 9;�0:16914E� 14Þ with the per-
iod converging to 31:416: Fig. 8 shows the periodic solution for the calculated initial condition.
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Fig. 6. The convergence of the initial condition to a point on the orbit as a function of the number of iterations for x2y2

potential in Example 3. It also shows the convergence of the period, and the reduction in the error. Convergence of

ð1:E� 4Þ � Error; . . . . . .; convergence of ð1:E� 9Þ � T ; . . . . . .; convergence of ð1:E� 6Þ � x1; . . . . . .; convergence of

ð1:E� 2Þ � x2; ———; convergence of x3; ; convergence of x4; .

M. Tadi / Journal of Sound and Vibration 283 (2005) 495–506 503
Note that the period for this orbit is T ¼ 6:283 and the algorithm has converged to T ¼ 31:416
which is equal to 5� T : Fig. 9 shows a number of periodic orbits around this region. The
calculated values for the initial conditions are given by

x1 0:170000000125Eþ 0 0:229999999963Eþ 0 0:600000000006Eþ 0 0:100000000003Eþ 1

x2 0:981010380230E� 5 0:996545022230E� 5 0:999110789116E� 5 0:988722206005E� 5

x3 0:147458666332E� 9 0:159586800885E� 9 0:470383618896E� 9 0:767782938779E� 9

x4 �0:2168999542E� 6 0:139189741819E� 6 �0:2132584063E� 8 �0:169144005E� 14

2
6664

3
7775:

By including higher-order conditions we are essentially reducing the space of the extremal
points for the cost functional that corresponds to a periodic orbit.
3. Conclusion

In this note, we presented a method for the computation of the period orbit for dynamical
systems. The approach is based on a variational principle which seeks to minimize a cost
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Fig. 7. A periodic solution for the x2y2 potential in Example 3 starting from the initial condition

ð0:170000000125; 0:98101038E� 5; 0:147458E� 9;�0:2168999E� 6Þ: Convergence of ð7:E� 5Þ � x1; . . . . . .; conver-

gence of x2; ———; convergence of x3; . . . . . .; convergence of x4; .

Fig. 8. A periodic solution for the x2y2 potential in Example 3 starting from the initial condition

ð1:00000000003; 0:988722206E� 5; 0:7677829E� 9;�0:169141E� 14Þ: Convergence of ð1:E� 5Þ � x1; . . . . . .; conver-
gence of x2; ———; convergence of x3; . . . . . .; convergence of x4; .

M. Tadi / Journal of Sound and Vibration 283 (2005) 495–506504
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Fig. 9. A number of periodic solutions for the x2y2 potential in Example 3. x1 ¼ 0:170000000125; ———; x1 ¼

0:229999999963; ; x1 ¼ 0:600000000006; ; x1 ¼ 1:000000000003; . . . . . . .

M. Tadi / Journal of Sound and Vibration 283 (2005) 495–506 505
functional. The method is based on the definition of a periodic orbit and can be applied to an
general dynamical system. We also presented a number of numerical examples. In all the cases the
inclusion of the higher-order terms greatly improves the convergence of the algorithm to a
solution.
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